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Abstract  

 

Main  

Case-control studies are commonly adopted in biomedicine research to discover the risk factors 

associated with diseases. It’s especially suitable for pioneering studies in diseases lacking the 

revealing clear mechanisms to design randomized trials and for rare diseases or for biomedical labs 

which are not feasible to recruit enough cases to do cohort or longitudinal studies1. 

The advent of omics-based strategies drives the risk factors to be investigated to a more precise and 

personalized molecular level. Transcriptome, for example, reflects the tissue or cellular functional 

states linking to diseases and helps evaluate which functionally expressed genes are specifically 

associated with a phenotype in the key tissues. These strategies are based on the accuracy and 

resolution of data generation and learning, i.e., new sequencing technology and tailored data analysis 

approaches. 

The past decade has seen a revolution in single-cell or single-nuclei sequencing (scRNA-seq/ snRNA-

seq) since the first bona fide study in 20092. They provide a relative abundance of different transcript 

species in cells or nuclei. The readouts cover, from the transcript abundance that characterizes cell 

identity to functional transcripts relevant to cell states, and the transcripts that contribute to individual 

specificity or are induced from treatment, pathologies, stimuli, or even from experimental procedures. 

Since cells are residents of a vast “landscape” of possible states3, the powerful high-covered sampling 

on many cells in a static time, given the ergodic theory4, could reflect the distribution of cellular 

heterogeneity in transcriptome within a short time, i.e., the order of the sampled cells in pseudo-time5. 

This is better resolved given the transcription6 or post-transcription kinetics7 that shapes the cellular 

dynamic landscape in terms of the transcriptome. 

Despite amazing progress in sequencing technology to produce omics data from single cells or nuclei 

to atlas the common characteristics of cell types in an organism, the case-control study leveraging the 

barcode resolution remains challenging, with less than a hundred published research articles from 

2018 (Fig. 1a). There are 111 datasets available on 80 diseases from human cell atlas8. If we extend 

the scope to include also the treatment studies, there are 155 NIH Bioprojects registered with scRNA 

or snRNA-seq performed on patient samples or patient-derived cell systems (Fig. 1b) (url for this 

collection:  https://www.ncbi.nlm.nih.gov/sites/myncbi/hong.jiang.8/collections/63241581/public/). The study is 

costly in both the library preparation and sequencing steps (Table 1). Therefore, the study requires 

meticulous consideration given a limited budget in the number of samples, number of cells per 

sample, and number of reads per cell to meet the needed power according to the specific aim of the 

study9. Moreover, the medical insights from the high-cost study are limited by the correctness of data 
analysis in decomposing the variance due to individual or batch differences and the depth of analysis 

to utilize the rich sampling of the nuclei or cells. Numerous computational analysis strategies were 

established to overcome the difficulties from study design, and noise removal to probing biological 
questions such as the differential expression (DE) or eQTLs. 

https://www.ncbi.nlm.nih.gov/sites/myncbi/hong.jiang.8/collections/63241581/public/


 
 

Fig.1 a) The number of publications with the topic in snRNA-seq or scRNA-seq case-control or 

human disease studies. Record counts are derived from Clarivate Web of Science. © Copyright 

Clarivate 2023. All rights reserved. b) Identification of projects in Bioprojects from NIH. The 

diagram is modified based on PRISMA diagram10.  

 
Technology Library Preparation costs per cell Sequencing costs/ M reads 

10X Genomics 0.05€ - 0.12€ 3.42€ 

Drop-Seq 0.09€ 3.42€ 

Smart-Seq2 13€ 3.42€ 

Table 1 Experimental cost per technology. Library preparation cost estimation (per cell) and 

sequencing cost estimation (per 1 million reads) for three of the most common single-cell RNA-seq 

technologies in Euro (€). For 10X Genomics, the cost depends on the number of cells per lane, an 

overloading of each lane with 20,000 cells generates costs of 0.05€ per cell, a loading with 8,000 cells 

per lane costs of 0.12€ per cell. 

 

The key factors defining promising analysis strategies are also in frequent updates. Firstly, 

computational frameworks such as Seurat11 and Scanpy12 adopt structured sparse matrices to store 

large-scale sc- or snRNA-seq data with the annotation to features and metadata to observations. These 

data are integrated and deposited onto large databases for various species and diseases (research 

areas) such as the human cell atlas8, PlantscRNAdb13, and CancerSCEM14. The datasets are easily 



accessible via repertories such as scfind15 and R package scRNAseq. In the analysis processes, the 

high dimensional data can be represented as manifolds or networks. Then a whole bunch of manifold 

learning and network analysis tools could be applied. The statistical models are used to do the 

hypothesis testing to identify the associated features, such as generalized linear model (GLM) fit 

negative binomial model and Wald test or likelihood ratio test in DESeq16; two-part GLM for 

dropouts and non-zeros (hurdle distribution) in MAST17; Bayesian frameworks such as SCDE18 and 

lvm-DE19; IDEAS using the permutation test20 and MARBLES using the Markov model21. To find 

lower dimensional and meaningful patterns from the raw matrices, matrices decomposition methods 

including principal component analysis (the implements were benchmarked22), non-negative matrix 

factorization23, Independent Component Analysis (reviewed24) and laten embedding multivariate 

gression25 are applied. The machine learning and deep learning methods are not absent. In theory, any 

supervised questions could be modeled via some kind of deep network model. In practice, generative 

models simulate droplets or backgrounds26. Transfer learning to make use of the large databases. Not 

to say that cell type annotation is inherently a classification question that complies well with deep 

learning classifiers.  

Although the xx and xx are comprehensively reviewed elsewhere, here we focus on understanding the 
data structure from the sequencing platforms as well as the study design of the expansion case-control 

studies. Based on these, we detailed how emerging analysis approaches were applied to solve the 

bottlenecks embedded in the study design and data structures. Although we are only at the door of 

new computational analysis tools to advance biomedical research, we suggest that the synergistic 

combination of bioinformatics and experimental testing and validation can markedly facilitate the 

important risk factors to be identified.  

 

Understand the data from scRNA-seq in case-control studies 

Understand the medical questions and study design. 
The study is designed to answer certain medical questions and all the analytic means should match the 

questions. The understanding of the study design supports further clarification on how each element 

of the count matrix is generated (from a generative view).  The incorporation of biomedical priors will 

optimize the analysis. As said, one biggest feature of biological data is the nature of signal and noise, 

which can only be comprehended with biomedical knowledge. 

Classic, however, when …,. Case-control studies can sample more than one case group and/or more 

than one control group when there are unbeknownst conditions that are differently deviated from 

investigated cases or there are multiple disease subtypes. For example, in a single-cell RNA 

sequencing study of a COVID-19 patient with psoriasis treated with ustekinumab, both healthy and 

patients with untreated psoriasis lesions were used as controls to protect against the possibility that the 

identified cell types affected, and transcriptional changes were associated with psoriasis27. (A subtype 

example: Single-cell RNA sequencing identifies macrophage transcriptional heterogeneities in 

granulomatous diseases) For different cases, the controls should be chosen accordingly, i.e., no one-

fit-all control groups. (Give examples and cite) When a study collects data on more than a single case 

and single control group, modeling the joint relationship between all groups and confounders and 

exposures of interest offers the possibility of comparing the cell types affected and genes 

differentially expressed from different confounders or exposures. 

 

Address cells as samples in following paragraphs 

 

Power analysis 

As in general statistics, the power analysis describes the relation among (biological) effect size (in 

DEG analysis is usually conferred as fold change), sample size, statistical power (True positive rate, 

not committing false negative errors), and significance (alpha as the threshold of committing false 

positive errors, in DEG analysis is usually conferred as False Discovery rate) is also essential in 

planning single-cell RNA-seq studies to get ideal power in different hypothesis testing such as to 

detect differentially expressed genes. In hindsight, although not recommended, as some case-control 

studies are confined by the cohort size at hand, sample size is not a plannable factor to achieve the 

desired power, the power analysis could be utilized to interpret and justify the testing results. By 



simulating the gene count data given a certain effect size and sample size and ground-truth “true 

positive rate”, at a significance level, from the statistical testing on the simulated data, one could 

compare the testing results to the provided ground truth to get the power of the postulated study 

design. 

 

Why single nuclei 
The confounded composition of cell types from sequencing data has long been a bottleneck for the 

detection of precise cellular and molecular targets associated with phenotypes and diseases. Tissues 

recorded in the human protein atlas are composed on average of over 10 cell types28. In case-control 

studies, it’s rather important to distinguish disease-affected cells and healthy functional cells or even 

cells such as immune cells that ingeniously constrain the disease progression. Quantifying features 

barcoded with the source cells or nuclei can help with this separation. Compared to single-cell 

sequencing, the advantages of single-nuclei sequencing are that it does not require the preservation of 

cellular integrity during sample preparation, especially dissociation. Therefore, it’s especially good 

for case-control studies that utilize the samples from biobank. Anyway, if one would collect fresh 

samples, why wouldn’t he design a randomized trial? 

 

Barcode and UMI-based data structure  
The intrisinc difference compared to bulks equnecing data is the biological samples contains cells 

(observations) that sampled from different populations, while in bulk-seq the data from biological 

samples in a group are supposed to be sampled from a population. 

While the scRNA-seq revolution starts with single-cell cDNA amplification and sequencing on 

SOLiD platform and there are currently a variety of single-cell isolation, library construction, and 

sequencing technologies available and under developing2, the focus in this review is only on the 

workflow of 10x Chromium for 3’ whole transcriptome gene expression profiling. For reviews on 

sequencing technologies, one can refer to. 

10x Chromium adopts the microfluidics technology for single-cell isolation29 and barcode primer bead 

in the droplets into the microfluidics system to generate the sequencing libraries. To control for the 

amplification duplicates, UMI is incorporated into each read in the initial library. The library is 

compatible with NGS short-read sequencing on Illumina sequencers. Then the readout of the NGS 

sequencer is a file in FASTQ format recording the nucleotide sequence of the reads in the library and 

its quality score30. If the reads are sequenced by Illumina sequencer, usually one can find a unique 

instrument name from Illumina software in the read name. The reads are then mapped to the 

corresponding reference genome. Aided by an annotated file, the reads mapped confidentially to 

transcriptome and uniquely to a gene are identified and the UMIs on them are to be counted to get the 

UMI count matric for downstream analysis. The usage of the mappers and barcode correction were 

summarized in the review. 

 

Curse of dimensionality and non-biological zeros in scRNA-seq data 
The sample space of scRNA-seq data without practical assumptions is a hypercube in n-dimensions as 

in (ℝ+)𝑛, with each mRNA or gene species a dimension, leading to 𝑛 > 10,000. In general, this high 

dimensionality will lead to curses in many regards that affects the fundamental analysis of scRNA-seq 

data. The essence is sourced from two facets, one is in the "vastness" of high-dimensional sample 

space, as the volume of the hypercube increases exponentially with the dimension 𝑉ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒~𝑙𝑛. 

Another is the accumulation of the noises. These will lead to problems illustrated in Box 1. 

 

Box 1 

- The sample scarcity: Usually it’s impossible in the medical field to collect an exponentially 

increased number of samples. It’s futile or impossible to expect real-world samples to cover the 

sample space. 

- Useless distance metrics in high-dimensional Euclidian space (Fig. 2), which lead to 

- loss of closeness: The closeness, if we defined as the samples within a distance of r with an 

upper limit, geometrically circumcise a subspace in (ℝ+)𝑛 as a hypersphere with a radius r. 



Mathematically the volume of such a space is the integral of area defined within √Σ𝑖=1
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which means the points on the periphery of the hypersphere are approaching the origin. This means no 

points are in the hypersphere, i.e., “close” to each other. 

- little difference in distances between samples: Colloquially, there are too many pairs of 

many combinations of features (samples) at the same distance. Geometrically most samples are 

located close to the edges of the hypercube. 

This affects the fundamental measurement of the sample difference in case-control studies and 

clustering based on distances.  

- Inconsistent variance metric by eigenvalues and eigenvectors: 

- The accumulation of noises and the possibility that the noises on one dimension jeopardize 

the whole data structure. 

- Hughes phenomenon in machine learning31: with a fixed number of training samples, the expected 

predictive power of a classifier or regressor deteriorates beyond a certain number of dimensions. This 

is a phenomenon sourced from the sample scarcity. 

The accumulation of small noises in high-dimensional statistics will cause problems in sparsity in 

sampling (loss of closeness), making it hard to collect enough samples which encompass sufficient 

feature space; useless distance metrics (because the distance to origin is large?, one dimension 

contribute a small part)  explanation:: too many possibilities (observation space) that has the same 

distance, i.e., too many combination of feature values that have the same distance, then we need much 

more samples to sample enough different distant space. With the same amount of observations, the 

clustering will fail since most of the data are in relatively similar distances. which renders many basic 

jobs such as PCA (variance does not converge to true variances), nearest neighbor search not trivial, 

and the important clustering to capture the observations (barcodes) coming from the biologically 

similar cell types, and hampers the very fundamental of comparing cases to controls is to measure the 

distance between samples (inconsistency of statistics); Specifically for PCA, which is a fundamental 

step to select features for most downstream analysis, suffers from the large variance of noises 

especially when the detection rate is low; to extract the features contributing to whether sample are 

case or control, even with the simplest linear model, the possible parameter values grow exponentially 

as the number of features grows and the false space increases as each of the features bearing noises 

and certain features will affect the global models; As more machine learning methods are used to 

analyze scRNA-seq data, the observations needed to cover the high dimensional space to train a 

model are one of the bottlenecks and notoriously known as “Hughes phenomenon”. 

For the first problem, dozens of methods were developed to impute data to overcome the sparse 

sampling. MAGIC, RECODE. 

The straightforward question is scRNA-seq case-control study is a data mining problem to find the 

features or combinations of features that are associated with the interesting observations of cases.  

 

Solution: Data representation as manifolds 

The real-world scRNA-seq sample space is rarely on n-dimension, And the patterns or information in 

the data that constrain the data into a lower-dimensional subspace are with significance to specialize 

scRNA-seq data among the high dimensional data in other fields such as image processing and to be 

learned as biological insights.  

Dropout: Mention but do not emphasis since UMI-based is not very prominent in this, the drop-out 

rates vary among the cells, depending on the quality of a particular library, cell type, or RNA-seq 

protocol 

Firstly, the RNA-seq count data across samples fit certain statistical distributions. The process of 

sequencing a cDNA library to a depth of N can be likened to repeatedly sampling N times, with each 

RNA species drawn with a probability (p) proportional to the abundance of that RNA species in the 

library. These events, involving the successful sampling of cDNA sequences from a particular RNA 

species, are independent integer events. When N is sufficiently large, this distribution converges 

towards a Poisson distribution. However, it is often more practical to assume that the variance and 



mean are independent random variables. Consequently, the negative binomial distribution (NB) is 

frequently employed to model scRNA-seq data. This distribution accounts for the probability of not 

successfully sampling a certain RNA species N-n times before achieving n successful samplings 

(where n is the entry in the count matrix). Evaluating the goodness-of-fit of these distributions reveals 

the applicability of these distributions. In 12 out of 18 examined 10X Genomics datasets, NB 

distribution outperformed xx, xx, and xx32. However, in certain UMI-based datasets, a Poisson 

distribution may provide a good fit33. It is noteworthy that single-cell data often exhibit zero 

inflation34, whereas UMI-based quantification typically lacks this feature35. In some cases, the zero-

inflated negative binomial model has been found to improve fitness by only 1.6%32. Nevertheless, it is 

prudent for researchers to meticulously examine the distribution of gene expression values in their 

specific datasets, taking into account the presence of dropout events, before selecting a distribution to 

model their data and construct background controls. Additionally, when choosing an appropriate 

normalization method, one must consider the raw distribution, ensuring that the chosen method aligns 

with the assumptions necessary for downstream analysis. 

Second, the information between these genes is redundant, in that the gene expression events and data 

counts are not usually independent (e.g., historically we know for decades that certain gene 
expressions have high correlation36 or mutual information37). While it’s unrealistic to expect real co-

linearity and the data lie on a lower dimensional plane (i.e., remove one dimension), the single-cell 

RNA-seq data falls in the manifold hypothesis, in which these high-dimensional spaces are generated 

from low-dimensional manifolds. The manifold still needs the full dimensions to characterize but 

locally can be characterized in lower dimensions. Driven by this hypothesis, we could alleviate the 

curse of dimensionality by reducing dimensions while preserving global or local structures. To 

preserve the global geometric structure, methods such as principal component analysis, isometric 

mapping, diffusion maps, and PHATE were often used. To represent the data on subspaces while 

preserving the local structure, methods such as locally linear embedding, Laplacian eigenmaps, and 

stochastic neighbor embedding were often used. The manifolds already being applied are summarized 

in Table 2. The challenges are to preserve the information to be indistinguishable from the original 

information while removing all redundancies and noises, so that’s where autoencoders and GANs can 

come in. To measure the properties of these manifolds, metrics such as scaler curvaton, metric tensor, 

geodesics, and homology were utilized. Established on these manifolds, methods to learn biological 

insights were developed, such as batch correction and network comparing algorithms. 

 

Solution: Data Imputation 

 

General signals and noises 

The intrinsic signatures of snRNA-seq data compared to tensors generated from other fields such as 

imaging processing in the signal and noise definition and data distribution in terms of specific 

questions being asked. The noises are not always Gaussian with low amplitudes. Technically, the 

general noises underlying most questions are from amplification bias, cell cycle effects, library size 

differences, and low RNA capture rate.  

 

Strategies streaming the scRNA-seq for case-control studies (~3500 

words, one fig) 

Data selection and denoising 
A typical scRNA-seq experiment generates over xx of data per sample. However, the high throughput 

droplet-based scRNA-seq technologies are particularly sparse with high dropout rates for features 

(unique molecules, i.e., genes) and empty observations composed of ambient RNAs or doublets. The 

data are in general confounded with other technical noises from amplification bias, cell cycle effects, 

library size differences, and low RNA capture rate.  

To distinguish the background noisy observations, the general idea is to nominate or simulate noisy 

observations and call the observations significantly deviate from them genuine cells or nuclei. The 

general idea is to nominate background observations from the data or simulate background 

observations learned from the data. Then the observations significantly deviate from them and are 

called genuine cells/nuclei. In DropletUtils, the ambient RNA pool is estimated with the gene count 



across barcodes with total counts less than 100. In Cell Ranger, the expected number of recovered 

cells is estimated by the OrdMag algorithm, and then the barcodes with counts less than the lowest in 

the expected recovered cells were nominated as background observations. In both tools, the 

significant deviation from the estimated background observations, i.e., the genuine cells, were tested 

using a Dirichlet-multinomial model of UMI count sampling and using a knee point filter to ensure 

that barcodes with large total counts are always retained. Among the deep learning models, deep 

generative models are adopted to generate the background-contaminated counts. The denoising 

autoencoders with the loss function match the biological “true” data distribution such as output 

denoising ZINB distributed features were applied to retain the essential biological features but drop 

the noises. 

 

Compare gene expression between groups and associate gene expression to disease 

phenotypes. 
The intrinsic difference here is that in bulk sequencing, the samples in a group are independent 

samples from a population distribution while the scRNA-seq data from each sample are from multiple 

populations (cell types). The natural way then is to calculate the cluster-based pseudo-bulk expression 

matrices, then in each cluster, the data structure becomes the same as the bulk RNA-seq data. After 

standard normalization, the differential expression test using regression models as known in edgeR38, 

DESeq216 , limma39 can be applied (Fig. 2). Other than the gene expression values, the factors that are 

divergent between groups and influence the estimated variance and coefficients of gene expressions 

are often used as covariates. This usually includes age, sex, day of the experiment, percentages of 

cells in the cell-cluster or cell-type in the total of cells and, GEM batch (defined by nuclear isolation, 

GEM generation, and barcoding performed for all samples in one batch in the same 10X GEM 

generation run, v2 or v3 chemistry). Another strategy is to compare the expression in individual cells, 

using statistical tests such as t-test, Wilcoxon rank-sum test, logistic regression40, negative binomial 

and Poisson generalized linear models, likelihood ratio test41, and the two-part hurdle model 

implemented by MAST17. However, in a benchmark study used the differential expression (DE) 

results from eighteen bulk RNA-seq datasets matching cell populations as gold standard, the pseudo 

bulk methods outperformed such single-cell methods measured by the concordance between DE 

results in bulk versus scRNA-seq datasets42. 

 

Deciphering the mechanism by associate gene expression variations to genetic or 

epigenetic variations 

 

Outlook of -omics in deciphering disease mechanisms in case-

control studies 

Medical and physiological concerns 

Spatial 

Disease circuits 
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